Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 168: 104112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513961

RESUMO

The bed bug Cimex lectularius is a worldwide human pest. The sequenced genome allows molecular analyses of all aspects of bed bug biology. The present work was conducted to contribute to bed bug cuticle biology. As in other insect species, the C. lectularius cuticle consists of the three horizontal layers procuticle, epicuticle and envelope. To analyse the genes needed for the establishment of the stratified cuticle, we studied the expression pattern of 42 key cuticle-related genes at the transition of the penultimate nymphal stage to adult animals when a new cuticle is formed. Based on gene expression dynamics, in simplified model, we distinguish two key events during cuticle renewal in C. lectularius. First, upon blood feeding, modulation of ecdysone signalling culminates in the transcriptional activation of the transcription factor Clec-Ftz-F1 that possibly controls the expression of 32 of the 42 genes tested. Second, timed expression of Clec-Ftz-F1 seems to depend also on the insulin signalling pathway as RNA interference against transcripts of the insulin receptor delays Clec-Ftz-F1 expression and stage transition. An important observation of our transcript survey is that genes needed for the construction of the three cuticle layers are largely expressed simultaneously. Based on these data, we hypothesise a considerable synchronous mechanism of layer formation rather than a strictly sequential one. Together, this work provides a basis for functional analyses of cuticle formation in C. lectularius.


Assuntos
Percevejos-de-Cama , Humanos , Animais , Percevejos-de-Cama/genética , Muda/genética , Genoma , Sequência de Bases , Ninfa/genética
2.
Arch Insect Biochem Physiol ; 115(2): e22091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385805

RESUMO

Insects are covered with free neutral cuticular hydrocarbons (CHC) that may be linear, branched, and unsaturated and vary in their chain length. The CHC composition is species-specific and contributes to the adaptation of the animal to its ecological niche. Commonly, CHCs contribute substantially to the inward and outward barrier function of the cuticle and serve pheromonal communication. They are generally determined by gas-chromatography, a time-consuming method requiring detailed expertize, but it is not available in many laboratories. Here, we report on the establishment of a colorimetric method allowing semi-quantitative determination of unsaturated CHCs in Drosophila flies. This method is based on the in vitro reaction of vanillin with double bounds in lipid molecules in an acidic solution to generate a reddish color. We found a robust correlation between gas chromatographic and vanillin-colorimetric data on unsaturated CHCs amounts in single flies. As the role of unsaturated CHCs in the performance of insects in their environment is only partly understood, we think that this novel method would allow fast and broad analyses of this type of CHCs in insects both in the field and in laboratories and thereby contribute to a substantial improvement in the investigation of this matter.


Assuntos
Colorimetria , Drosophila , Animais , Benzaldeídos , Lipídeos
3.
Insect Sci ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850506

RESUMO

With climate change, the spotted-wing Drosophila (SWD, Drosophila suzukii) invades a great number of fruit production regions worldwide. A plethora of insecticides are being applied for management of this pest. As expected, SWD develops resistance against some potent insecticides or is rather insensitive to some others. Therefore, there is an urgent need to identify and characterize alternative insecticides to control SWD populations. Here, we have studied the effects of the orally applied inhibitor of the fatty acid synthesis pathway spirotetramat on SWD fitness with respect to fecundity and surface barrier function at different stages. In our experiments, we applied spirotetramat mixed with baker's yeast and showed that females and males were not repelled by effective concentrations of this insecticide. We found that spirotetramat, by trend, lowers egg numbers laid by fed females. These eggs rapidly desiccate, and only a few larvae hatch. Spirotetramat is lethal to larvae and reduces survival of adult flies under low-humidity conditions. Taken together, based on our data, we propose to use yeast supplemented with spirotetramat and additional SWD-specific attractants in traps in non-crop areas in order to eradicate SWD populations before they infest crop production sites.

4.
Antioxidants (Basel) ; 12(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36978901

RESUMO

In this study, we shed light for the first time on the usage of migratory locusts (Locusta migratoria) as an insect model to investigate the nanotoxicological influence of aluminum oxide (Al2O3) nanoparticles at low doses on testes, and evaluate the capacity of a whole-body extract of American cockroaches (Periplaneta americana) (PAE) to attenuate Al2O3 NPs-induced toxicity. Energy dispersive X-ray microanalyzer (EDX) analysis verified the bioaccumulation of Al in testicular tissues due to its liberation from Al2O3 NPs, implying their penetration into the blood-testis barrier. Remarkably, toxicity with Al engendered disorders of antioxidant and stress biomarkers associated with substantial DNA damage and cell apoptosis. Furthermore, histopathological and ultrastructural analyses manifested significant aberrations in the testicular tissues from the group exposed to Al2O3 NPs, indicating the overproduction of reactive oxygen species (ROS). Molecular docking analysis emphasized the antioxidant capacity of some compounds derived from PAE. Thus, pretreatment with PAE counteracted the detrimental effects of Al in the testes, revealing antioxidant properties and thwarting DNA impairment and cell apoptosis. Moreover, histological and ultrastructural examinations revealed no anomalies in the testes. Overall, these findings substantiate the potential applications of PAE in preventing the testicular impairment of L. migratoria and the conceivable utilization of locusts for nanotoxicology studies.

5.
Insect Sci ; 30(2): 268-278, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36114809

RESUMO

The polysaccharide chitin is a major scaffolding molecule in the insect cuticle. In order to be functional, both chitin amounts and chitin organization have been shown to be important parameters. Despite great advances in the past decade, the molecular mechanisms of chitin synthesis and organization are not fully understood. Here, we have characterized the function of the Chitinase 6 (Cht6) in the formation of the wing, which is a simple flat cuticle organ, in the fruit fly Drosophila melanogaster. Reduction of Cht6 function by RNA interference during wing development does not affect chitin organization, but entails a thinner cuticle suggesting reduced chitin amounts. This phenotype is opposed to the one reported recently to be caused by reduction of Cht10 expression. Probably as a consequence, cuticle permeability to xenobiotics is enhanced in Cht6-less wings. We also observed massive deformation of these wings. In addition, the shape of the abdomen is markedly changed upon abdominal suppression of Cht6. Finally, we found that suppression of Cht6 transcript levels influences the expression of genes coding for enzymes of the chitin biosynthesis pathway. This finding indicates that wing epidermal cells respond to activity changes of Cht6 probably trying to adjust chitin amounts. Together, in a working model, we propose that Cht6-introduced modifications of chitin are needed for chitin synthesis to proceed correctly. Cuticle thickness, according to our hypothesis, is in turn required for correct organ or body part shape. The molecular mechanisms of this processes shall be characterized in the future.


Assuntos
Quitinases , Proteínas de Drosophila , Animais , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Drosophila/genética , Drosophila melanogaster , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Asas de Animais/metabolismo
6.
Arch Insect Biochem Physiol ; 111(1): e21913, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35599599

RESUMO

Resilin is a protein matrix in movable regions of the cuticle conferring resistance to fatigue. The main component of Resilin is Pro-Rresilin that polymerises via covalent di- and tri-tyrosine bounds (DT). Loss of Pro-Resilin is nonlethal and causes a held-down wing phenotype (hdw) in the fruit fly Drosophila melanogaster. To test whether this mild phenotype is recurrent in other insect species, we analysed resilin in the spotted-wing fruit fly Drosophila suzukii. As quantified by DT autofluorescence by microscopy, DT intensities in the trochanter and the wing hinge are higher in D. suzukii than in D. melanogaster, while in the proboscis the DT signal is stronger in D. melanogaster compared to D. suzukii. To study the function of Pro-Resilin in D. suzukii, we generated a mutation in the proresilin gene applying the Crispr/Cas9 technique. D. suzukii pro-resilin mutant flies are flight-less and show a hdw phenotype resembling respective D. melanogaster mutants. DT signal intensity at the wing hinge is reduced but not eliminated in D. suzukii hdw flies. Either residual Pro-Resilin accounts for the remaining DT signal or, as proposed for the hdw phenotype in D. melanogaster, other DT forming proteins might be present in Resilin matrices. Interestingly, DT signal intensity reduction rates in D. suzukii and D. melanogaster are somehow different. Taken together, in general, the function of Pro-Resilin seems to be conserved in the Drosophila genus; small differences in DT quantity, however, allow us to hypothesise that Resilin matrices might be modulated during evolution probably to accommodate the species-specific lifestyle.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Controle de Insetos , Proteínas de Insetos , Postura
7.
Environ Sci Pollut Res Int ; 29(38): 57644-57655, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35353308

RESUMO

Neonicotinoids are modern insecticides widely used in agriculture worldwide. Their impact on target (nervous system) and non-target (midgut) tissues has been well studied in beneficial insects including honeybees under controlled conditions. However, their detailed effects on pest insects on the field are missing to date. Here, we have studied the effects of the neonicotinoid imidacloprid on the midgut of the pest insect Locusta migratoria caught in the field. We found that in the midgut of imidacloprid-exposed locusts the activity of enzymes involved in reactive oxygen metabolism was perturbed. By contrast, the activity of P450 enzymes that have been shown to be activated in a detoxification response and that were also reported to produce reactive oxygen species was elevated. Probably as a consequence, markers of oxidative stress including protein carbonylation and lipid peroxidation accumulated in midgut samples of these locusts. Histological analyses revealed that their midgut epithelium is disorganized and that the brush border of the epithelial cells is markedly reduced. Indeed, microvilli are significantly shorter, misshapen and possibly non-functional in imidacloprid-treated locusts. We hypothesize that imidacloprid induces oxidative stress in the locust midgut, thereby changing the shape of midgut epithelial cells and probably in turn compromising their physiological function. Presumably, these effects reduce the survival rate of imidacloprid-treated locusts and the damage they cause in the field.


Assuntos
Inseticidas , Locusta migratoria , Ortópteros , Animais , Abelhas , Insetos/metabolismo , Inseticidas/farmacologia , Locusta migratoria/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Ortópteros/metabolismo
8.
BMC Res Notes ; 14(1): 351, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496944

RESUMO

OBJECTIVES: As in most organisms, the surface of the fruit fly Drosophila melanogaster is associated with bacteria. To examine whether this association depends on cuticle quality, we isolated and quantified surface bacteria in normal and melanized flies applying a new and simple protocol. RESULTS: On wild flies maintained in the laboratory, we identified two persistently culturable species as Lactobacillus plantarum and Acetobacter pomorum by 16S rDNA sequencing. For quantification, we showered single flies for DNA extraction avoiding the rectum to prevent contamination from the gut. In quantitative PCR analyses, we determined the relative abundance of these two species in surface wash samples. On average, we found 17-times more A. pomorum than L. plantarum. To tentatively study the importance of the cuticle for the interaction of the surface with these bacteria, applying Crispr/Cas9 gene editing in the initial wild flies, we generated flies mutant for the ebony gene needed for cuticle melanisation and determined the L. plantarum to A. pomorum ratio on these flies. We found that the ratio between the two bacterial species reversed on ebony flies. We hypothesize that the cuticle chemistry is crucial for surface bacteria composition. This finding may inspire future studies on cuticle-microbiome interactions.


Assuntos
Acetobacter , Lactobacillus plantarum , Microbiota , Acetobacter/genética , Animais , Drosophila melanogaster , Lactobacillus plantarum/genética
9.
BMC Biol ; 18(1): 17, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075655

RESUMO

BACKGROUND: In insects, continuous growth requires the periodic replacement of the exoskeleton. Once the remains of the exoskeleton from the previous stage have been shed during ecdysis, the new one is rapidly sclerotized (hardened) and melanized (pigmented), a process collectively known as tanning. The rapid tanning that occurs after ecdysis is critical for insect survival, as it reduces desiccation, and gives the exoskeleton the rigidity needed to support the internal organs and to provide a solid anchor for the muscles. This rapid postecdysial tanning is triggered by the "tanning hormone", bursicon. Since bursicon is released into the hemolymph, it has naturally been assumed that it would act on the epidermal cells to cause the tanning of the overlying exoskeleton. RESULTS: Here we investigated the site of bursicon action in Drosophila by examining the consequences on tanning of disabling the bursicon receptor (encoded by the rickets gene) in different tissues. To our surprise, we found that rapid tanning does not require rickets function in the epidermis but requires it instead in peptidergic neurons of the ventral nervous system (VNS). Although we were unable to identify the signal that is transmitted from the VNS to the epidermis, we show that neurons that express the Drosophila insulin-like peptide ILP7, but not the ILP7 peptide itself, are involved. In addition, we found that some of the bursicon targets involved in melanization are different from those that cause sclerotization. CONCLUSIONS: Our findings show that bursicon does not act directly on the epidermis to cause the tanning of the overlying exoskeleton but instead requires an intermediary messenger produced by peptidergic neurons within the central nervous system. Thus, this work has uncovered an unexpected layer of control in a process that is critical for insect survival, which will significantly alter the direction of future research aimed at understanding how rapid postecdysial tanning occurs.


Assuntos
Exoesqueleto/fisiologia , Drosophila/fisiologia , Hormônios de Inseto/metabolismo , Hormônios de Invertebrado/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Epiderme/fisiologia , Feminino , Masculino , Neuropeptídeos/metabolismo
10.
Insect Biochem Mol Biol ; 79: 87-96, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27794461

RESUMO

Shortly after emergence the exoskeleton (cuticle) of adult insects is rapidly expanded, hardened (sclerotized), and pigmented (melanized). In parallel with this process, the oenocytes, which are large polyploid cells located below the abdominal epidermis, secrete onto the cuticle a cocktail of cuticular hydrocarbons (CHs) and waxes. These improve the waterproofing of the cuticle, and also provide important chemosensory and pheromonal cues linked with gender, age, and species differentiation. The hardening and pigmentation of the new cuticle are controlled by the neurohormone, bursicon, and its receptor, encoded by the DLGR2 receptor, rickets (rk); by contrast, little is known about the timecourse of changes in CH profile and about the role of bursicon in this process. Here we show in Drosophila that rk function is also required for the normal maturation of the fly's CH profile, with flies mutant for rk function showing dramatically elevated levels of CHs. Interestingly, this effect is mostly abrogated by mutations in the Δ9 desaturase encoded by the desaturase1 gene, which introduces a first double bond into elongated fatty-acid chains, suggesting that desaturase1 acts downstream of rk. In addition, flies mutant for rk showed changes in the absolute and relative levels of specific 7-monoenes (in males) and 7,11-dienes (in females). The fact that these differences in CH amounts were obtained using extractions of very different durations suggests that the particular CH profile of flies mutant for rk is not simply due to their unsclerotized cuticle but that bursicon may be involved in the process of CH biosynthesis itself.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Hormônios de Invertebrado/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Hidrocarbonetos/metabolismo , Masculino , Pigmentação , Receptores Acoplados a Proteínas G/metabolismo
11.
J Lipid Res ; 57(3): 443-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26759364

RESUMO

To develop and reproduce, animals need long-chain MUFAs and PUFAs. Although some unsaturated FAs (UFAs) can be synthesized by the organism, others must be provided by the diet. The gene, desat1, involved in Drosophila melanogaster UFA metabolism, is necessary for both larval development and for adult sex pheromone communication. We first characterized desat1 expression in larval tissues. Then, we found that larvae in which desat1 expression was knocked down throughout development died during the larval stages when raised on standard food. By contrast pure MUFAs or PUFAs, but not saturated FAs, added to the larval diet rescued animals to adulthood with the best effect being obtained with oleic acid (C18:1). Male and female mating behavior and fertility were affected very differently by preimaginal UFA-rich diet. Adult diet also strongly influenced several aspects of reproduction: flies raised on a C18:1-rich diet showed increased mating performance compared with flies raised on standard adult diet. Therefore, both larval and adult desat1 expression control sex-specific mating signals. A similar nutrigenetics approach may be useful in other metabolic mutants to uncover cryptic effects otherwise masked by severe developmental defects.


Assuntos
Sinais (Psicologia) , Gorduras Insaturadas na Dieta/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Ácidos Graxos Dessaturases/deficiência , Ácidos Graxos Dessaturases/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genótipo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Especificidade de Órgãos , Atrativos Sexuais/biossíntese , Atrativos Sexuais/farmacologia
12.
PLoS One ; 9(3): e92352, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667657

RESUMO

Food and host-preference relies on genetic adaptation and sensory experience. In vertebrates, experience with food-related cues during early development can change adult preference. This is also true in holometabolous insects, which undergo a drastic nervous system remodelling during their complete metamorphosis, but remains uncertain in Drosophila melanogaster. We have conditioned D. melanogaster with oleic (C18:1) and stearic (C18:0) acids, two common dietary fatty acids, respectively preferred by larvae and adult. Wild-type individuals exposed either during a transient period of development-from embryo to adult-or more permanently-during one to ten generation cycles-were affected by such conditioning. In particular, the oviposition preference of females exposed to each fatty acid during larval development was affected without cross-effect indicating the specificity of each substance. Permanent exposure to each fatty acid also drastically changed oviposition preference as well as major fitness traits (development duration, sex-ratio, fecundity, adult lethality). This suggests that D. melanogaster ability to adapt to new food sources is determined by its genetic and sensory plasticity both of which may explain the success of this generalist-diet species.


Assuntos
Drosophila melanogaster/fisiologia , Ácidos Graxos/farmacologia , Fertilidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Oviposição/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Feminino , Preferências Alimentares/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Longevidade/efeitos dos fármacos , Masculino , Fenótipo
13.
PLoS One ; 6(10): e26899, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046401

RESUMO

Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce both a strong aversion and a persistent aggregation behavior. Adults generally preferred SFAs, and laid more eggs and had a longer life span when ingesting these substances as compared to UFAs. Our data suggest that insects can discriminate long-chain dietary FAs. The developmental change in preference shown by this species might reflect functional variation in use of FAs or stage-specific nutritional requirements, and may be fundamental for insect use of these major dietary components.


Assuntos
Ácidos Graxos , Preferências Alimentares/fisiologia , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Drosophila melanogaster/crescimento & desenvolvimento , Ácidos Graxos/farmacologia , Ácidos Graxos Insaturados , Larva
14.
Learn Mem ; 16(12): 761-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19933880

RESUMO

Harnessed bees learn to associate an odorant with an electric shock so that afterward the odorant alone elicits the sting extension response (SER). We studied the dependency of retention on interstimulus interval (ISI), intertrial interval (ITI), and number of conditioning trials in the framework of olfactory SER conditioning. Forward ISIs (conditioned stimulus [CS] before unconditioned stimulus [US]) supported higher retention than a backward one (US before CS) with an optimum around 3 sec. Spaced trials (ITI 10 min) supported higher retention than massed trials (ITI 1 min) and led to the formation of a late long-term memory (l-LTM) that depended on protein synthesis. Our results reaffirm olfactory SER conditioning as a reliable tool for the study of learning and memory.


Assuntos
Abelhas/fisiologia , Condutos Olfatórios/fisiologia , Biossíntese de Proteínas/fisiologia , Reflexo/fisiologia , Retenção Psicológica/fisiologia , Olfato/fisiologia , Animais , Anisomicina/farmacologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Distribuição de Qui-Quadrado , Condicionamento Clássico/fisiologia , Dactinomicina/farmacologia , Aprendizagem por Discriminação/fisiologia , Estimulação Elétrica/métodos , Odorantes , Condutos Olfatórios/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Reflexo/efeitos dos fármacos , Retenção Psicológica/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...